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Abstract

Many real-world networks show community structure, i.e., groups (or clusters)
of nodes that have a high density of links within them but with a lower density of
links between them. In this paper, by applying feedback injections to a fraction
of network nodes, various clusters are synchronized independently according
to the community structure generated by the group partition of the network
(cluster synchronization). This control is achieved by pinning (i.e. applying
linear feedback control) to a subset of the network nodes. Those pinned
nodes are selected not randomly but according to the topological structure
of communities of a given network. Specifically, for a given group partition
of a network, those nodes with direct connections between groups must be
pinned in order to achieve cluster synchronization. Both the local stability and
global stability of cluster synchronization are investigated. Taking the tree-
shaped network and the most modular network as two particular examples,
we illustrate in detail how the pinning strategy influences the generation of
clusters. The simulations verify the efficiency of the pinning schemes used in
this paper.

PACS numbers: 05.45.Xt, 05.45.Ra, 05.45.−a, 89.75.Hc
Mathematics Subject Classification: 34C28, 93C10

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Networks appear everywhere and many complex dynamical processes in science, engineering
and nature can be analyzed as evolution of networks. Some typical examples of dynamical
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networks include ecological and food webs [1], the world wide web (WWW) [2], transmission
of diseases in population [3–6], neural networks [7] and social networks [8]. A complex
network is often constituted by many elements with interactions between them. From the
viewpoint of computer science, an individual element can be considered as a node, while
the links between nodes represent the relationship between elements. Generally speaking,
the dynamics of an individual node are determined by two factors: each nodes dynamical
properties and the influence from its neighbors.

In 1960, Erdös and Rényi (ER) [9] proposed the random graph model to describe network
structure, based on the assumption of completely random connections between nodes in a
network. However, in the real world it is hard to find a network whose connections are
completely random. In order to describe a transition from a regular model to a random model,
in 1998 Watts and Strogatz (WS) [10] introduced the small-world network model, in which
some connections are determined beforehand and the others are produced randomly according
to certain probability. This model can show two common characteristics of many real-world
networks: large clustering coefficient and short average path length. In 1999, Barabási
and Albert [11] introduced another network generation model which generates a power-law
distribution of node degrees. Since then, the so-called scale-free networks have been observed
in many real-life complex networks. Roughly speaking, in a scale-free network, most nodes
have very few connections yet only a few nodes have many connections.

During the past few decades, the synchronization of complex networks has been studied
thoroughly and widely. Most existing works ([12–23]) have concentrated on complete
synchronization, i.e., all states of nodes in a network are asymptotically equal in the phase
space. Many other patterns of synchronization have also been defined and studied, such as
cluster synchronization [24, 25], phase and lag synchronization [26], bubbling synchronization
[27] and generalized synchronization [28]. In this paper, we will address the cluster
synchronization of complex networks with community structure via pinning control.

Design of a suitable control strategy to steer a dynamical network toward an expected
special state is a very interesting and significant topic in complex network control. In
[29, 30], feedback pinning has been investigated for the control of spatiotemporal chaos
in regular dynamical networks. For heterogeneous networks, the targeted pinning scheme,
which aims to pin the most highly connected nodes, is more effective than random pinning
applied to the same number of nodes [31, 32]. In [33], Lu has introduced an adaptive dynamical
network by integrating the complex network model and adaptive technique, and discussed the
synchronization and pinning control of this network. In [34], the authors have proven that a
single controller could pin a coupled complex network to a homogenous solution, and given
sufficient conditions to guarantee the convergence of the pinning process both locally and
globally. Other research works about pinning control of complex networks can be seen in
[35, 36] and many references cited therein. All these works consider how to pin a complex
network to a homogeneous state, i.e., all nodes converge to a single state.

In this paper, we will discuss a more general problem: how to construct a suitable pinning
control strategy for a complex network with community structure going to an inhomogeneous
state (cluster synchronization), i.e., the nodes in the same group (community) converge to
a single state (desired state) and different groups converge to different states. That is, the
aim is that the nodes within each state are fully synchronized (to some dynamic state) while
nodes drawn from separate clusters behave independently. When these desired states are
non-chaotic, this problem comes down to the investigation of the control of chaos, which has
become an active field in the study of nonlinear dynamics due to its potential applications [37].
On the other hand, when these desired states are chaotic, this study may find applications in
communication engineering and other fields of science and technology [38].

2



J. Phys. A: Math. Theor. 41 (2008) 505101 K Li et al

1

m

3

2

Figure 1. The community structure of a complex network. The ith community (group) in this
network denoted by ith numbered gray circle. The dotted lines show the probable connections
between the m communities.

In order to achieve cluster synchronization, we should pin at least those nodes with direct
connections between groups in a network with community structure. With two kinds of
control designed according to the community structure of a network (the controls are detailed
below in (10) and (11)), we investigate both the local stability and global stability of cluster
synchronization in section 3. Taking a tree-shaped network as a particular example in section 4,
two clusters and three clusters are generated respectively by applying the appropriate pinning
strategies. Another example of the most modular network, with large degree of community
structure, is also presented to realize global synchronization of five clusters. The simulation
results verify the efficiency of the pinning schemes used in this paper. Finally, we conclude in
section 5.

2. Preliminaries

Most social networks show community structure [8, 39], i.e., groups of nodes that have a
high density of links within them, yet with a lower density of links between groups. For
social and biological networks at least, community structure is a common network property
[40]. Supposing that a given network has been divided into m communities according to one
criterion or another, then we can show the schematic diagram for it in figure 1.

Obviously, no community should be isolated according to the definition of community
structure. At the same time, not every two communities in a network are required to have
connections between them. Our following discussions will be based on these basic facts.

For a given network, there are different group partitions leading to different community
structures. For example, a phone call network [41] can show different community structures
according to different group partitions.

For simplicity, we now make some assumptions for a network with community structure as
follows. Suppose that the number of nodes in this network is N, and Ui = {li−1 +1, . . . , li}, i ∈
{1, . . . , m} denotes the index set of all nodes in the ith community, where l0 = 0, lm = N

and li−1 < li, li ∈ N. Let Ũi be the index set of all nodes in the ith community having
direct connections to other communities. For each j ∈ Ũi , define Vij as the set of nodes
outside the ith community with direct connections to node j . And let �(Ui) denote the element

3



J. Phys. A: Math. Theor. 41 (2008) 505101 K Li et al

number of the finite set Ui . According to these definitions, it is easy to see that Ũi ⊆ Ui and⋃m
i=1 Ui = {1, . . . , N}. Because of the property of community structure, in general

⋃m
i=1 Ũi

is just a fraction of all nodes in a network. In view of this fact, we want to control these nodes
in

⋃m
i=1 Ũi to generate cluster synchronization, i.e., the nodes in the same group Ui converge

to a single state and different groups Ui,Uj (i �= j) converge to different states.
In this paper, we consider the dynamical network which consists of N identical linearly

and diffusively coupled nodes, with each node being an n-dimensional dynamical system. The
state equations of this network have the following form:

ẋi (t) = f (xi(t)) + c

N∑
j=1

aijΓxj (t), i = 1, 2, . . . , N, (1)

where xi = (x1i , x2i , . . . , xni)
T ∈ R

n are the state variables of node i; the function f (·)
describes the local dynamics of nodes and is continuously differentiable and capable of
showing abundant dynamical behaviors, including equilibrium points, periodic orbits and
chaotic states. The constant c > 0 denotes the coupling strength and Γ ∈ R

n×n represents
the inner-coupling matrix which is a constant 0 − 1 matrix linking coupled variables. For
simplicity, we assume that Γ = diag(γ1, γ2, . . . , γn) is a diagonal matrix with γi � 0. The
coupling matrix A = (aij ) ∈ R

N×N with zero-sum rows shows the coupling configuration of
the network. If nodes i and j are connected, then aij = aji = 1; otherwise aij = aji = 0.
The diagonal elements of the coupling matrix A are

aii = −
N∑

j=1,j �=i

aij = −ki, i = 1, 2, . . . , N, (2)

where ki denotes the degree of node i. In this paper, we suppose that the matrix A is irreducible,
which means that the network is connected in the sense that there are no isolated clusters.
In this case, we know that zero is an eigenvalue of A with multiplicity 1 and all the other
eigenvalues are strictly negative.

3. Stability analysis for cluster synchronization under control

In this section, we will address the local stability and global stability of cluster synchronization
of the considered network (1) under certain control. According to the control goal and
assumptions presented in section 2, we first define the error variables as ei(t) = xi(t) − sj (t),
for j = 1, . . . , m and i = lj−1 + 1, . . . , lj , where lj are integers with lj−1 < lj , 2 � m < N ,
and sj (t) can be equilibrium point, periodic orbit or chaotic orbit in the phase space satisfying
ṡj (t) = f (sj (t)). Define M = (s1(t), . . . , s1(t), . . . , sm(t), . . . , sm(t)) ⊂ R

N×n as the cluster
synchronization manifold of network (1) under certain control, where sj (t) continuously
appears lj − lj−1 times in the expression of M.

The N nodes are said to achieve cluster synchronization, i.e., the manifold M is stable if

lim
t→∞ ‖ei(t)‖ = 0, i = 1, 2, . . . , N. (3)

According to the above definition of error variables, we can first give the corresponding
error system (without control) with respect to (1) as

ėi (t) = f (xi) − f (sτ ) + c

N∑
j=1

aijΓej + c

m−1∑
k=0,k �=τ−1

lk+1∑
j=lk+1

aijΓ(sk+1 − sτ ),

τ = 1, 2, . . . , m, i = lτ−1 + 1, . . . , lτ . (4)
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Now let

ϕi(s1, s2, . . . , sm) = c

m−1∑
k=1

lk+1∑
j=lk+1

aijΓ(sk+1 − s1), (5)

for i = 1, . . . , l1, then we have the following result to define other ϕi, i = lk−1 +1, . . . , lk, k =
1, 2, . . . , m, for an uniform expression of (4).

Lemma. By using the uniform form in expression (5) of ϕi , then the error system (4) can be
rewritten as

ėi (t) = f (xi) − f (sk) + c

N∑
j=1

aijΓej + ϕi(s1, s2, . . . , sm),

k = 1, 2, . . . , m, i = lk−1 + 1, . . . , lk. (6)

Proof. Here, we only show that

c

m−1∑
k=0,k �=1

lk+1∑
j=lk+1

aijΓ(sk+1 − s2) = ϕi(s1, . . . , sm),

for i = l1 + 1, . . . , l2 (as τ = 2 in the (4)), since other equalities (τ = 3, . . . , m) can be
similarly verified. From the condition (2) of diffusive coupling, we have

m−1∑
k=0,k �=1

lk+1∑
j=lk+1

aijΓ(sk+1 − s2) =
l1∑

j=1

aijΓ(s1 − s2) +
m−1∑
k=2

lk+1∑
j=lk+1

aijΓ(sk+1 − s2)

=
l1∑

j=1

aijΓ(s1 − s2) +
m−1∑
k=2

lk+1∑
j=lk+1

aijΓ(sk+1 − s1) −
m−1∑
k=2

lk+1∑
j=lk+1

aijΓ(s2 − s1)

=
l2∑

j=l1+1

aijΓ(s2 − s1) +
m−1∑
k=2

lk+1∑
j=lk+1

aijΓ(sk+1 − s1)

= ϕi(s1, . . . , sm)/c,

as required. �

Obviously, according to the assumptions in section 2, we have

ϕi(s1, s2, . . . , sm) = 0, i ∈
⎛⎝ m⋃

j=1

Ũj

⎞⎠c

, (7)

where
( ⋃m

j=1 Ũj

)c = {1, . . . , N}∖ ⋃m
j=1 Ũj .

Now, let ui(t) ∈ R
n, i = 1, . . . , N be the control inputs; then the controlled dynamical

network (1) can be described by

ẋi (t) = f (xi(t)) + c

N∑
j=1

aijΓxj (t) + ui(t), i = 1, 2, . . . , N. (8)

From (6), we know that its corresponding error system can be described as

ėi (t) = f (xi) − f (sk) + c

N∑
j=1

aijΓej + ϕi(s1, s2, . . . , sm) + ui(t),

k = 1, 2, . . . , m, i = lk−1 + 1, . . . , lk. (9)

In view of the special property of community equipped to network (1), we design two
kinds of controller to realize cluster synchronization. The first kind is of local feedback
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controller which is designed as

ui(t) = −cdiΓei − ϕi, i ∈
m⋃

j=1

Ũj ,

(10)

ui(t) = 0, i ∈
⎛⎝ m⋃

j=1

Ũj

⎞⎠c

,

where di > 0 is the feedback control gain.
The other one is of nonlocal feedback controller constructed as

ui(t) = −cdiΓei − c
∑
j∈Vki

aijΓej − ϕi, i ∈ Ũk,

(11)
ui(t) = 0, i ∈ Uk\Ũk,

where k ∈ {1, 2, . . . , m}. It is easy to verify that the manifold M is an invariant manifold of
the network (1) under the control given by (10) or (11). One can also intuitively understand
the function of the controllers ui in (10) and (11) in the following way. The terms ϕi are
devoted to weakening the mutual influences among clusters at the intersection nodes, while
the remainder terms (feedback control) are designed to synchronize all nodes in the same
cluster.

Firstly, we consider the global stability of the cluster manifold M of the dynamical
network (8) under control given by (10). Let D = diag(d1, d2, . . . , dN), with di = 0 for all
i ∈ (⋃m

j=1 Ũj

)c
, and B = A − D = (bij )N×N . Since B is a diagonally dominant matrix, we

know that its eigenvalues satisfy 0 > λ1 � λ2 � . . . � λN .

Theorem 1. For given c and {di}Ni=1, if there exist two positive definite matrices P =
diag(p1, . . . , pn),� = diag(δ1, . . . , δn) and a constant ξ > 0 such that

(x − y)T P
(
f (x) − f (y) − �Γ(x − y)

)
� −ξ(x − y)T (x − y), (12)

for every x, y ∈ R
n, and cλ1 + δk < 0 for all k ∈ {1, 2, . . . , n}, then the cluster manifold M

of the dynamical network (8) under control (10) is globally stable.

Proof. Define a Lyapunov function as

V (t) = 1

2

N∑
i=1

ei(t)
T Pei(t). (13)

Then, its derivative along the solutions of the error system (9) under the control (10) is

dV (t)

dt
=

l1∑
i=1

eT
i P

⎛⎝f (xi) − f (s1) + c

N∑
j=1

bijΓej

⎞⎠ + · · ·

+
N∑

i=lm−1

eT
i P

⎛⎝f (xi) − f (sm) + c

N∑
j=1

bijΓej

⎞⎠
=

l1∑
i=1

eT
i P(f (xi) − f (s1) − �Γei) + · · · +

N∑
i=lm−1

eT
i P(f (xi) − f (sm) − �Γei) +

N∑
i=1

eT
i P

⎛⎝c

N∑
j=1

bijΓej + �Γei

⎞⎠ . (14)

6
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Now denote ẽk = (ek1, . . . , ekN)T , k = 1, 2, . . . , n; then we have

N∑
i=1

eT
i P(�Γei) =

N∑
i=1

n∑
k=1

e2
kipkδkγk =

n∑
k=1

pkγk

N∑
i=1

e2
kiδk

=
n∑

k=1

pkγk(̃e
k)T (δkIN)̃ek, (15)

where IN is the N-order identity matrix and

N∑
i=1

eT
i P

⎛⎝c

N∑
j=1

bijΓej

⎞⎠ =
N∑

i=1

N∑
j=1

cbij e
T
i PΓej =

N∑
i=1

N∑
j=1

cbij

n∑
k=1

ekipkγkekj

=
n∑

k=1

pkγk

N∑
i=1

N∑
j=1

cbij ekiekj

=
n∑

k=1

pkγk(̃e
k)T (cB)̃ek. (16)

Substituting (15) and (16) into (14) and noting the assumptions gives that

dV (t)

dt
� −ξ

N∑
i=1

eT
i ei � − 2ξ

max
i

{pi}V (t).

It follows that

V (t) = O(e
−2ξ t/ max

i
{pi }

).

Therefore, we get the global stability of the cluster manifold M. �

From (12) in theorem 1, we can see that if δk, k = 1, 2, . . . , n are large enough, then
this condition can always be satisfied. But on the other hand, too many large δk will destroy
the second condition cλ1 + δk < 0. So, a balance between them is needed for guaranteeing
the global stability of the cluster manifold. This further indicates that the global stability is
governed synchronously by both the network properties and dynamical behavior of individual
nodes.

Next, we will address the local and global stability of the cluster manifoldM of dynamical
network (8) under control given by (11). Differentiating along the manifold M, the controlled
error system (9) can be further described by

ėi = Df (sk)ei + c

N∑
j=1

aijΓej , i ∈ Uk\Ũk,

(17)

ėi = Df (sk)ei + c

N∑
j=1

aijΓej − cdiΓei − c
∑
j∈Vki

aijΓej , i ∈ Ũk,

where k ∈ {1, 2, . . . , m} and Df (sk) ∈ R
n×n are the Jacobian matrices of the function f (·)

at sk .
Now define Ei (t) = (0, . . . , 0, eli−1+1, . . . , eli , 0, . . . , 0)T , and E(t) = ∑m

i=1 Ei (t) where
E, Ei ∈ R

N×n. It is obvious that E = 0 if and only if Ei = 0 for all i ∈ {1, 2, . . . , m}.
Let Ã = (̃aij )N×N with ãii = 0, i = 1, . . . , N , and ãij = 1 as j ∈ Vki with i ∈ Ũk;

otherwise ãij = 0. Let B̃ = A − D − Ã = (̃bij )N×N ; then the controlled error system (17) can

7
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be rewritten as

Ė = Ė1 + Ė2 + · · · + Ėm =
m∑

i=1

EiDf (si)
T + cB̃EΓ

=
m∑

i=1

(EiDf (si)
T + cB̃EiΓ). (18)

Similarly, the matrix B̃ is negative definite because of its diagonal dominance. To investigate
the stability of the solution E = 0, it only needs to consider the stability of the solution Ei = 0

of the following m systems:

Ėi = EiDf (si)
T + cB̃EiΓ, i = 1, 2, . . . , m. (19)

Let 0 > λ̃1 � λ̃2 � · · · � λ̃N be the eigenvalues of matrix B̃ and assume that

B̃φk = λ̃kφk, k = 1, 2, . . . , N. (20)

Then perform an invertible transformation to Ei by

Ei = �Yi , i = 1, 2, . . . , m, (21)

where � = [φ1, φ2, . . . , φN ] ∈ R
N×N . Under this transformation, we get

Ẏi = YiDf (si)
T + c�YiΓ, i = 1, 2, . . . , m, (22)

where � = diag(̃λ1, λ̃2, . . . , λ̃N ). To study the stability of the m systems (22), it only needs
to consider the stability of the following m systems:

Ż = ZDf (si)
T + c�ZΓ, i = 1, 2, . . . , m, (23)

where Z = (z1, z2, . . . , zN)T ∈ R
N×n.

It is easy to see that (23) further gives

żj = (Df (si) + c̃λjΓ)zj , (24)

where i = 1, 2, . . . , m and j = 1, 2, . . . , N . Similarly, in order to study the stability for (24),
we only need to consider the stability of the following m × N subsystems:

ż = (Df (si) + c̃λjΓ)z, (25)

where z ∈ R
n, i = 1, 2, . . . , m, and j = 1, 2, . . . , N . By the above analysis, the stabilities of

the systems (17) and (25) are equivalent to each other.
Now for a given i ∈ {1, 2, . . . , m}, let μij (t), j = 1, 2, . . . , n denote all the eigenvalues

of the matrix (1/2)(Df (si(t))+Df (si(t))
T ), μ(t) = max

1�i�m
max

1�j�n
{μij (t)} and γ = max

1�i�n
{γi}.

Then we have the following results.

Theorem 2. For given c and {di}Ni=1, if there exists a constant ρ > 0 such that
μ(t) < −c̃λ1γ − ρ for all t > 0, then the cluster manifold M of the dynamical network
(8) under control (11) is locally stable.

Proof. Since

1

2

dz(t)T z(t)

dt
= z(t)T [Df (si(t)) + c̃λjΓ]z(t)

= z(t)T [(1/2)(Df (si(t)) + Df (si(t))
T ) + c̃λjΓ]z(t), (26)

by using the assumptions in this theorem, then from (26) we obtain

1

2

dz(t)T z(t)

dt
� z(t)T [μ(t) + c̃λ1γ ]z(t) < −ρz(t)T z(t), (27)

8
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Figure 2. A group partition of a tree-shaped network leading to two communities. The black
circles constitute one community U1, while the white circles the other one U2.

which implies that z(t)T z(t) = O(e−2ρt ). This further means that the cluster synchronization
manifold is stable locally. �

Remark 1. Generally, the matrix Df (si(t)) is uniformly bounded, that is, there exists a
constant β ∈ R such that Df (si(t)) < βIn,∀t > 0. Therefore from (26), if there exists a
constant ρ > 0 such that β < −c̃λ1γ − ρ, then the cluster manifold is stable locally.

Remark 2. Substituting B̃ for B in (16), the global stability of cluster manifold of dynamical
network (8) with control (11) can be similarly obtained with the conditions (12) and c̃λ1+δk < 0
for all k ∈ {1, 2, . . . , n}.

4. Numerical simulations and analysis with the pinning control

4.1. The tree-shaped network

In this section, we take a tree-shaped network as a simple example to verify the efficiency of
the pinning scheme introduced in previous sections. Although the topology structure of this
network is simple, the exhibition of community structure is quite clear. So the tree-shaped
networks could be considered as a typical class of networks holding community structure. For
simplicity, here the considered network includes N = 15 nodes, whose topology structure is
shown in figure 2. And the local dynamics of nodes are controlled by the Lorenz oscillator
described by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1i

dt
= a1(x2i − x1i )

dx2i

dt
= a2x1i − x2i − x1ix3i , i = 1, 2, . . . , 15,

dx3i

dt
= x1ix2i − a3x3i

(28)

where a1 = 10, a2 = 28, a3 = (8/3). We choose matrix diag(1, 1, 1) as the inner-coupling
matrix Γ. And the control gains di to controlled nodes have the same values, i.e., di = d.

Next, we want to generate two kinds of cluster synchronization of this network via pinning
control provided by (10). These two kinds of cluster synchronization are first based on two
kinds of group partition on the network.

The first group partition (m = 2) is also shown in figure 2. Under this partition, we get two
communities U1 and U2 with �(U1) = 7 and �(U2) = 8. According to the analysis in section 2
and 3, we should control two nodes in this network to achieve cluster synchronization, because
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Figure 3. The desired two different states s1 and s2 both with chaotic behaviors in their two-
dimension phase space.
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Figure 4. E1 denotes the error of cluster synchronization for the controlled network and E2 the
error between the two communities U1 and U2, corresponding to c = 750 and d = 20.

�(Ũ1
⋃

Ũ2) = 2. Now define error E1 of cluster synchronization for this controlled network
and E2 the error between the two communities U1 and U2 as

E1(t) = 1

N

(∑
i∈U1

‖xi(t) − s1(t)‖ +
∑
i∈U2

‖xi(t) − s2(t)‖
)

,

E2(t) = ‖xi0(t) − xj0(t)‖, i0 ∈ U1, j0 ∈ U2, (29)

where s1 and s2 are chosen as two different chaotic orbits of the Lorenz system (see
figure 3), with initial conditions (12, 13, 14) and (12.5, 13.5, 14.5), respectively. Certainly,
we can also choose s1 and s2 as equilibrium points or periodic orbits. It is clear that the
cluster synchronization is achieved if E1 converges to zero and E2 does not as t → ∞. Under
c = 750 and d = 20, figure 4 gives a realization of cluster synchronization via pinning control
(10), whose global stability will be guaranteed by theorem 1. From [42], there exist constants
M1 = 28.9180 and M2 = 56.9180 such that ‖s1i‖ � M1, ‖s2i‖ � M1 and ‖s3i‖ � M2. It then
follows eT

i (f (xi) − f (si)) �
[−a1 + a1+a2+M2

2 + M1
2

]
eT
i ei ≈ 51.918eT

i ei . So, the inequality
(12) is satisfied with the setting P = I3 and � = δI3 with δ = 70.1. In addition, the injection
of two controllers with d = 20 leads to λ1 = −0.0938. Therefore, we further obtain the
second condition cλ1 + δ = −0.25 < 0 in theorem 1 for global stability of this two-cluster
synchronization.
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Figure 5. The minimal control gain dmin > 0 for the achievement of two clusters synchronization
with respect to coupling strength c.
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Figure 6. E1 denotes the error of cluster synchronization for the controlled network and E2 the
error between the two communities U1 and U2, corresponding to c = 12 and d = 3.

From above, we see that very large coupling strength c should be required to meet the
condition in theorem 1 to hold the global stability of cluster synchronization. In fact, the
condition (12) is too strong (as mentioned also in [34]), while there is a quite loose one
(x − y)T P

(
f (x) − f (y)

)
� −ξ(x − y)T (x − y), which is valid for many chaotic oscillators

with many x, y. This implies that we can generally choose small δk to get the inequality (12).
Then, small coupling strength c is just needed to satisfy the second condition cλ1 + δk < 0
for achieving the cluster synchronization globally. In view of this rough deduction, we
now present a simulation-based analysis to show this case also arises in this example. By
simulations, we find that there exists a constant c∗ = 9.98 such that the network cannot be
controlled successfully when the coupling strength c is smaller than c∗, even the control gain
d is very large. On the other hand, for any given c � c∗, there exists the minimal control gain
dmin > 0 for the achievement of cluster synchronization. Moreover, very small value of d is
needed for the achievement of control when c is relatively large.

Figure 5 gives the values dmin for the successful control with respect to different and
relatively small coupling strength c � c∗. For example, with c = 12 and d = 3, figure 6
displays explicitly that the network is successfully controlled by the two feedback controllers

11
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Figure 7. A group partition of a tree-shaped network leading to three communities. The black
circles and gray circles respectively constitute two communities U1 and U2, while the white circles
the third one U3.
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Figure 8. The desired three different states s1, s2 and s3 all with chaotic behaviors in their
two-dimension phase space.

provided by (10) in section 3. Now we consider m = 3 and a corresponding partition to
the aforementioned tree-shaped network is shown by figure 7. Under this partition, we have
�(U1) = 3, �(U2) = 9 and �(U3) = 3. And, we should control four nodes in this network
to realize cluster synchronization because �(Ũ1

⋃
Ũ2

⋃
Ũ3) = 4. The definitions of error E1

and E2 for this controlled network are similar to (29), while E3 and E4 are defined by

E3(t) = ‖xi0(t) − xj0(t)‖, i0 ∈ U1, j0 ∈ U3,

E4(t) = ‖xi ′0(t) − xj ′
0
(t)‖, i ′0 ∈ U2, j ′

0 ∈ U3.

Following the similar analysis process for dealing with the above two clusters, we can also
choose large coupling strength c from theorem 1 to realize these three clusters globally. Here,
we omit this analogous analysis just for simplicity, but also show the probability of successful
control with relatively small c, based on a simulation analysis. In this simulation, we still
choose s1, s2 and s3 as different chaotic orbits (see figure 8) from the Lorenz system with
initial conditions (12, 13, 14), (12.5, 13.5, 14.5) and (13, 14, 15), respectively. Obviously,
cluster synchronization is achieved if E1 converges to zero and E2, E3, E4 do not. Figure 9
shows the values dmin for the control gain with different coupling strength c � c∗. For
this controlled network, we get c∗ = 3.51. From figure 10, we know that the network is
successfully controlled by the four feedback controllers provided by (10) in section 3, even
the coupling strength is small.
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Figure 9. The minimal control gain dmin > 0 for the achievement of three clusters synchronization
with respect to coupling strength c.
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Figure 10. E1 denotes the error of cluster synchronization for the controlled network, E2 the
error between U1 and U2, E3 the error between U1 and U3 and E4 the error between U2 and U3,
corresponding to c = 6 and d = 1.

4.2. The most modular network

In order to consider a more definite and typical community network, we now address the most
modular network [43], whose degree of community structure is quantified by the network
modularity. The modularity of a partition of a network is defined as

Q =
m∑

i=1

[
Li

L
−

(
Di

2L

)2
]

, (30)

where L denotes the total number of links in the network, Li the number of links inside
community i and Di the total degree of the nodes in community i in the network. According
to the constraints given by [43], figure 11 just gives a simple example of the most modular
network with m = 5, L = 25, N = 20 and Li = 4 for all i. In this case, we get Q = 0.6
which means that this network holds quite strong community structure.
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Figure 11. The most modular network with the total number of links L = 25. There are five
communities (cliques), each of which is denoted by the circles with the same gray degree.
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Figure 12. The desired five different states si , i = 1, . . . , 5 for the controlled modular network.
They are all with chaotic behaviors in their two-dimension phase space.

Next, we shall verify our pinning scheme with the control given by (10) under this modular
network. The local dynamics of nodes, inner-coupling matrix and control gains are all set the
same as the case in section 4.1. Under the partition in figure 11, there are five communities
with the identical size �(Ui) = 4, i = 1, 2, . . . , 5, and �(

⋃5
i=1 Ũi) = 10. Then, these ten

nodes in the set
⋃5

i=1 Ũi must be controlled according to the analysis in sections 2 and 3. The
errors are defined as

E1(t) =
m∑

i=1

∑
j∈Ui

‖xj (t) − si(t)‖,

Eij (t) = ‖xi0(t) − xj0(t)‖, i0 ∈ Ui, j0 ∈ Uj , (31)

where the desired states si, i = 1, 2, . . . , 5, are chosen as five different chaotic orbits of the
Lorenz system (see figure 12), with initial conditions (14 + 0.5i, 15 + 0.5i, 16 + 0.5i), i =
1, 2, . . . , 5, respectively. Figure 13 shows the simulation result with coupling strength c = 71
and control gain d = 100. By a similar analysis as done in section 4.1, we choose P = I3 and
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Figure 13. E1 denotes the error of cluster synchronization of the controlled modular network, Eij

the error between Ui and Uj , corresponding to c = 71 and d = 100. Here, only the error E14 is
shown for simplicity.

� = δI3 with δ = 70.1, and then get cλ1 +δ = −0.19 < 0. By theorem 1, the synchronization
of these five clusters are globally stable.

Generally, it is hard to get analytical bounds for c and d to meet the conditions in theorem
1, especially for the unknown structure of the coupled system. Obviously, one can always
realize the cluster synchronization globally if the coupling strength c and control gain d are
chosen to be large enough, resulting in cλ1(d) → −∞. However, this is rigorous for many
practical applications. From the above simulation-based analysis in section 4.1, the cluster
synchronization can be actually realized only by small coupling strength and control gain.
This means that our pinning control scheme is very effective, but a more moderate condition
should be found.

Other various kinds of cluster synchronization can also be realized by using the above
pinning strategy. Certainly, it first depends on the corresponding partitions to the network.
Moreover, in view of practical applications, we should guarantee that the controlled nodes are
just a fraction of total nodes in network to reduce the cost for control. In conclusion, by these
analytical and numerical simulations, the efficiency of the pinning control scheme provided
in this paper has been verified.

5. Conclusions and remarks

In this paper, cluster synchronization of a class of controlled dynamical networks with
community structure has been theoretically and numerically studied. The local stability
and global stability of the cluster synchronization manifold have been investigated. The
pinning control scheme provided in this paper mainly depends on the topology structure of
communities of a given network. In order to achieve cluster synchronization, we should pin
at least those nodes with direct connections between groups in a network with community
structure. Since both the tree-shaped network and the most modular network possess well
property of community structure, we take them as special examples to show how the pinning
scheme influences the generation of clusters. The simulation results verify the efficiency of
the pinning scheme introduced in this paper.

In order to achieve expected cluster synchronization, the pinning scheme provided in
this paper is not unique. For example, in addition to the nodes in the set

⋃m
i=1 Ũi we may

control additional nodes outside this set. With the increase of controlled nodes, it is easy
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to see that the minimal control gain dmin and critical value c∗ for coupling strength would
decrease. Generally speaking, small dmin and c∗ are beneficial for the application of control
techniques. However, the increase of the number of controlled nodes will also increase the
cost of control. So, considering the global cost of control, the strategy introduced in this paper
may be the most suitable. Other patterns of partial synchronization may also be realized by
this kind of pinning control. For example, we only consider the complete synchronization of
a part of nodes in a network and disregard the dynamics of the remaining nodes. In order
to decrease the coupling strength and control gain, adaptive control may be a good choice.
We will concentrate on these topics in future. In conclusion, these studies may promote the
development of controlling chaos, communication engineering and other fields of science and
technology.
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